Neural Networks via FluCoMa In Max
Explore the possibilities offered by Neural Networks with FluCoMa in Max.
Presentation slides (63 pages)
Flucoma patches
1. Introduction _ What is FluCoMa_
2. Plan _ Outline
3. Classification
4. Multilayer-Perceptron
5. A Musical Motivation for Classification
6. Supervised vs. Unsupervised Learning
7. Training a Classifier
8. Feed-forward and Back-propagation
9. Classification Patch
10. The _error_ _Training fluid.mlpclassifier~
11. Making Predictions with fluid.mlpclassifier
12. Validation with Training & Testing Data
13. Saving a Trained Neural Network for Later Use
14. Doing Classification with fluid.mlpregressor~
15. Artistic Use of Classification
17. Automated Dataset Creation and Validation
18. Neural Network Parameters (Object Attributes)
19. Hiddenlayers
20. Activation and Outputactivation
21. Learnrate
22. Maxiter
23. Batchsize
24. Validation
25. Overfitting
26. Momentum
27. Q&A on Parameters
28. Neural Network Regression with Audio Descriptors
29. Musical Example
30. Training fluid.mlpregressor~
31. Wavetable Autoencoder
32. @tapin and @tapout
33. Final Q&A